77 research outputs found

    Entanglement as a semantic resource

    Get PDF
    The characteristic holistic features of the quantum theoretic formalism and the intriguing notion of entanglement can be applied to a field that is far from microphysics: logical semantics. Quantum computational logics are new forms of quantum logic that have been suggested by the theory of quantum logical gates in quantum computation. In the standard semantics of these logics, sentences denote quantum information quantities: systems of qubits (quregisters) or, more generally, mixtures of quregisters (qumixes), while logical connectives are interpreted as special quantum logical gates (which have a characteristic reversible and dynamic behavior). In this framework, states of knowledge may be entangled, in such a way that our information about the whole determines our information about the parts; and the procedure cannot be, generally, inverted. In spite of its appealing properties, the standard version of the quantum computational semantics is strongly "Hilbert-space dependent". This certainly represents a shortcoming for all applications, where real and complex numbers do not generally play any significant role (as happens, for instance, in the case of natural and of artistic languages). We propose an abstract version of quantum computational semantics, where abstract qumixes, quregisters and registers are identified with some special objects (not necessarily living in a Hilbert space), while gates are reversible functions that transform qumixes into qumixes. In this framework, one can give an abstract definition of the notions of superposition and of entangled pieces of information, quite independently of any numerical values. We investigate three different forms of abstract holistic quantum computational logic

    Quantum information, cognition, and music

    Get PDF
    Parallelism represents an essential aspect of human mind/brain activities. One can recognize some common features between psychological parallelism and the characteristic parallel structures that arise in quantum theory and in quantum computation. The article is devoted to a discussion of the following questions: 1. a comparison between classical probabilistic Turing machines and quantum Turing machines. 2. possible applications of the quantum computational semantics to cognitive problems. 3. parallelism in music

    Epistemic quantum computational structures in a Hilbert-space environment

    Get PDF
    Some critical open problems of epistemic logics can be investigated in the framework of a quantum computational approach. The basic idea is to interpret sentences like “Alice knows that Bob does not understand that π is irrational” as pieces of quantum information (generally represented by density operators of convenient Hilbert spaces). Logical epistemic operators (to understand, to know ...) are dealt with as (generally irreversible) quantum operations, which are, in a sense, similar to measurement-procedures. This approach permits us to model some characteristic epistemic processes, that concern both human and artificial intelligence. For instance, the operation of “memorizing and retrieving information” can be formally represented, in this framework, by using a quantum teleportation phenomenon

    Non-unitary Evolution of Quantum Logics

    Get PDF
    In this work we present a dynamical approach to quantum logics. By changing the standard formalism of quantum mechanics to allow non-Hermitian operators as generators of time evolution, we address the question of how can logics evolve in time. In this way, we describe formally how a non-Boolean algebra may become a Boolean one under certain conditions. We present some simple models which illustrate this transition and develop a new quantum logical formalism based in complex spectral resolutions, a notion that we introduce in order to cope with the temporal aspect of the logical structure of quantum theory

    Paraconsistent ideas in quantum logic

    No full text
    corecore